배터리 인터페이스 게놈(2)
-
EU의 배터리 2030+ 전략: 배터리 인터페이스 게놈: BIG (Battery Interface Genome)
요약:계면은 배터리의 성능과 수명을 유지하는데 매우 중요한 영역이지만 그 특성과 형성의 비밀이 충분히 밝혀지지 않은 미지의 영역이라 제어하기가 쉽지 않다. 그러다 보니 현재 배터리 설계와 생산은 주로 재료와 그를 다루는 공정에 주로 치우쳐져 있다. 유럽은 Battery 2030+을 통해 초고성능 배터리를 개발한다는 목표하에 재료개발과 더불어 계면연구의 중요성을 부각시키고 있다. 그들이 계획한대로 AI기술을 사용해 재료와 계면의 특성을 파악하고 정확히 예측하는 시스템을 완성하게 된다면 배터리의 설계를 위해 투자하는 시간과 비용을 대폭 줄일 수 있을 것이다. 이렇게 완성된 시스템은 배터리의 설계와 생산에만 사용되는 게 아니라 사용중인 배터리가 수명열화나 안전성의 위험이 발생하지 않도록 하는데도 유용하게 사용..
2022.12.22 -
AI기술을 이용한 배터리 개발
Edisonian approach전통적으로 전지를 개발하는 과정은 Edisonian approach라고 불리는 Trial and error방법을 사용하여왔다. 먼저 적합한 재료를 찾기 위해 다양한 배터리 재료업체들로부터 재료를 받아 DOE를 실시하여 적합한 재료군을 선별하고 선별된 재료들로 극판의 조성과 전류밀도, 압축 밀도, 전해액의 조성, 젤리롤의 구조등의 다양한 변수를 조절하여 DOE를 실시한다. 이러한 방법은 재료 선정부터 극판 설계까지 수많은 DOE로 셀을 제조하고 평가하는데 많은 비용과 시간이 소요된다.보통 기술수준이 높은 배터리 회사의 경우 다양한 재료로 셀을 개발해오며 쌓아 온 데이터 베이스와 설계 및 공정 경험이 있지만 배터리를 개발하여 양산하는 데는 최소 1년 이상이 걸린다. 만일 새로..
2022.11.23